PPARG Binding Landscapes in Macrophages Suggest a Genome-Wide Contribution of PU.1 to Divergent PPARG Binding in Human and Mouse
نویسندگان
چکیده
BACKGROUND Genome-wide comparisons of transcription factor binding sites in different species can be used to evaluate evolutionary constraints that shape gene regulatory circuits and to understand how the interaction between transcription factors shapes their binding landscapes over evolution. RESULTS We have compared the PPARG binding landscapes in macrophages to investigate the evolutionary impact on PPARG binding diversity in mouse and humans for this important nuclear receptor. Of note, only 5% of the PPARG binding sites were shared between the two species. In contrast, at the gene level, PPARG target genes conserved between both species constitute more than 30% of the target genes regulated by PPARG ligand in human macrophages. Moreover, the majority of all PPARG binding sites (55-60%) in macrophages show co-occupancy of the lineage-specification factor PU.1 in both species. Exploring the evolutionary dynamics of PPARG binding sites, we observed that PU.1 co-binding to PPARG sites appears to be important for possible PPARG ancestral functions such as lipid metabolism. Thus we speculate that PU.1 may have guided utilization of these species-specific PPARG conserved binding sites in macrophages during evolution. CONCLUSIONS We propose a model in which PU.1 sites may have served as "anchor" loci for the formation of new and functionally relevant PPARG binding sites throughout evolution. As PU.1 is an essential factor in macrophage biology, such an evolutionary mechanism would allow for the establishment of relevant PPARG regulatory modules in a PU.1-dependent manner and yet permit for nuanced regulatory changes in individual species.
منابع مشابه
Cross species comparison of C/EBPa and PPARg profiles in mouse and human adipocytes reveals interdependent retention of binding sites
Background: The transcription factors peroxisome proliferator activated receptor g (PPARg) and CCAAT/enhancer binding protein a (C/EBPa) are key transcriptional regulators of adipocyte differentiation and function. We and others have previously shown that binding sites of these two transcription factors show a high degree of overlap and are associated with the majority of genes upregulated duri...
متن کاملDataset integration identifies transcriptional regulation of microRNA genes by PPARc in differentiating mouse 3T3-L1 adipocytes
Peroxisome proliferator-activated receptor c (PPARc) is a key transcription factor in mammalian adipogenesis. Genome-wide approaches have identified thousands of PPARc binding sites in mouse adipocytes and PPARc upregulates hundreds of protein-coding genes during adipogenesis. However, no microRNA (miRNA) genes have been identified as primary PPARc-targets. By integration of four separate datas...
متن کاملFABP4 Attenuates PPARg and Adipogenesis and Is Inversely Correlated With PPARg in Adipose Tissues
Fatty acid binding protein 4 (FABP4, also known as aP2) is a cytoplasmic fatty acid chaperone expressed primarily in adipocytes and myeloid cells and implicated in the development of insulin resistance and atherosclerosis. Here we demonstrate that FABP4 triggers the ubiquitination and subsequent proteasomal degradation of peroxisome proliferator–activated receptor g (PPARg), a master regulator ...
متن کاملLocalization of Epidermal-Type Fatty Acid Binding Protein (E-FABP) in Degeneration and Regeneration of Sciatic Nerve after Crush Injury in Mouse
Purpose:The regeneration of axon and myelin sheet after crush injury of peripheral nerves involves interaction of several types of cells, including Schwann cells, monocyte, macrophage and fibroblast. Among them, haematogenous macrophages invading into the peripheral nervous systein play a major role in myelin uptake during Wallerian degeneration. Materials and Methods: In this study 35 C57/BL6 ...
متن کاملپاسخ متفاوت سلولهای قلبی به اسیدهای چرب اشباع و غیر اشباع
Introduction & Objective: The link between dietary fat and coronary heart disease has attracted much attention since the effect of long?chain fatty acids (LCFA) on gene transcription has been established, which in part, these effects can be explained by the regulation of gene transcription. In this study, the P19CL6 cardiac cell?line was targeted for the investigation of (i) the effects of long...
متن کامل